
Complex Numbers  

   
Basics 

Definition Of 𝒊 
√−1 = 𝑖 
𝑖! = −1 

    

Calculating Powers Of 𝒊:  
Use 𝑖! = −1 and indices rule (𝑥")# = 𝑥"# 

𝑖$% = (𝑖!)!$ = (−1)!$ = 1 
𝑖!& = (𝑖!)'(𝑖 = (−1)𝑖 = −𝑖 

    

Calculating Square Roots 
√−10√−40 = √−1√10√−1√40 = 𝑖√10𝑖√40 = 𝑖!√400 = −20 . 

Do not make the mistake of saying √−10√−40 = √400 = 20 

    

Cartesian Form 
Cartesian Form 
We usually use the letter z to denote a complex number 

𝑧 =real part ±	𝑖 (imaginary part) 
Note: This can also be written as 𝑧 =real part ±	(imaginary	part)	𝑖  
 
We usually use the letters 𝑎	and 𝑏 or 𝑥 and 𝑦 

𝑧 = a + 𝑖𝑏 or 𝑧 = 𝑥 + 𝑖𝑦 
𝑅𝑒(𝑧) means the real part of 𝑧 

𝐼𝑚(𝑧) means the imaginary part of 𝑧 

    

Complex Conjugate 
We swap the sign of the imaginary part for the complex conjugate 

𝑧 = 𝑎 + 𝑏𝑖 ⟹ 𝑧∗ = 𝑎 − 𝑏𝑖 
𝑧 = 𝑎 − 𝑏𝑖 ⟹ 𝑧∗ = 𝑎 + 𝑏𝑖 

We use the notation 𝑧∗	𝑜𝑟	𝑧̅ to denote the complex conjugate of z.  

    

Representation On An Argand Diagram 
 

    

Adding and Subtracting  
When we add/subtract we combine the real parts together and the imaginary parts 

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 

    

Multiplying  
When we multiply, we expand the brackets as normal and then collect like terms.  
Remember that 	𝑖!	 can be replaced with −1 
 
                               = 12 + 9𝑖 − 8𝑖 − 6𝑖! = 12 − 6(−1) + 𝑖 = 12 + 6 + 𝑖 = 18 + 𝑖  

    

Dividing  
Multiply numerator and denominator by the complex conjugate.  

!"#$
%"&$

= !"#$
%"&$

× %'&$
%'&$

= !%'!&$"#%$'#&$!

%!'%&$"%&$'&!$!
= !%'#&$!'!&$"#%$

%!'&!$!
 

 
 
 

    

Finding The Modulus And Argument 
The modulus of a complex number denoted, |𝑧|,	 is the distance from the origin to that number on an 
argand diagram. 
The argument of a complex number, arg 𝑧, is the angle between the positive real axis and the line joining 
the number to the origin on an Argand diagram.  
 
Method to calculate modulus and argument: 

    Given 𝑧 = 𝑥 + 𝑦𝑖 ⇒ M
modulus = |z| = T𝑥! + 𝑦!																																												

	argument = arg 	𝑧 = 𝑡𝑎𝑛+' X,#
,"
Y 	where − π < 𝜃 < 𝜋		

 

Note: The red parts are always a plus 
Next step for argument: Draw 𝑥 + 𝑦𝑖 out to know which quadrant you’re in, start from positive x axis and 
find the anti-clockwise angle to find the value of theta 

    

Properties Of Modulus And Complex Conjugate: 
• |𝑧'𝑧!| = |𝑧'||𝑧!| 
• `-"

-!
` = |-"|

|-!|
 

• (𝑧 ± 𝑤)∗ = 𝑧∗ ± 𝑤∗ 
• (𝑧𝑤)∗ = 𝑧∗𝑤∗ 

• '$
%
(
∗
= $∗

%∗
 if 𝑤 ≠ 0 

• 𝑧 × 𝑧∗ = |𝑧|& 

    

Use of factor theorem and polynomial division      

Factorising Quadratics:  
Use quadratic formula and work backwards 

    

Understanding Roots of Quadratics and Cubics: 
• A cubic with real coefficients either has: 

o all three roots real 
o one root real and the other two form a complex conjugate pair 

    

the middle terms cancel out 



• A quartic with real coefficients either has: 
o all four roots real 
o two roots real and the other two form a complex conjugate pair 
o two roots form a conjugate pair and the other two roots also form a conjugate pair 

Factorising Cubics, Quartics and Above: 
Use the factor theorem to find one of the factors and then use algebraic division or comparing coefficients 
until we have all the factors/roots. 
 
Recall that for 2 roots of the polynomial 𝑎 and	𝑏	, then we have factors “(𝑧 − 𝑎)” and “(𝑧 − 𝑏)”, and can 
multiply/expand them to get another factor: 𝑧! − (𝑎 + 𝑏)𝑧 + (𝑎𝑏) 
 
In other words when we have 2 roots we can build the equation,  

𝑧! − (sum	of	roots)𝑧 + (product	of	roots) 
 

Remember that complex number roots occur in conjugate pairs, so if we know one root, then the 
conjugate is necessarily another root. 

    

Solving/Finding Roots Of Quadratics: 
We can use the quadratic formula. For an equation 𝑎𝑧! + 𝑏𝑧 + 𝑐 = 0, we get 

            𝑧( =
'#"√#!'*!%

+!
  and  𝑧+ =

'#'√#!'*!%
+!

  

    

Solving/Finding Roots Of Cubics, Quartics And Above: 
To solve polynomial equations that may have complex roots, we can use the same approach as above to 
factorise and then we just go one step further by setting the factors equal to 0 after.  
 
Remember that complex number roots occur in conjugate pairs, so if we know one root, then the complex 
conjugate is necessarily another root. 

    

Given Some Of The Roots, Find The Equation 
We must use the fact that complex number roots occur in conjugate pairs, so if we know one root, then 
the conjugate is necessarily another root and then build the equation with the roots 𝑎 and 𝑏 as: 

𝑧! − (𝑎 + 𝑏)𝑧 + (𝑎𝑏) 
Now we can use the comparing coefficients method to find the unknowns 

    

Equating Real and Imaginary Coefficients In Order To: 
• Find unknowns in equations 
• Find square roots 
• Solve equations 

    

Proving purely real or purely imaginary     

Modulus Argument Form 

Converting cartesian to modulus argument form:  𝒂 + 𝒃𝒊 → 	𝒓(𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽) = 𝒓𝒄𝒊𝒔	𝜽 
We just need to find 𝑟	𝑎𝑛𝑑	𝜃.  To find 𝑟	and 𝜃 we use the formula 

𝑎 + 𝑏𝑖 ⇒ l
𝑟 = √𝑎! + 𝑏!																																												
𝜃 = 𝑡𝑎𝑛+' X`#

"
`Y																																							

	
 

and then draw the angle 𝜃 in the quadrant where the complex number 𝑎 + 𝑏𝑖 lies 
Read off  𝜃 by starting on the positive 𝑥 axis (like when you solve for trig using the CAST diagram, but 
remember: −𝜋 ≤ 𝜃 < 𝜋 which means we can only go 180° in either a clockwise or anti clockwise 
direction.  

    

Representation On An Argand Diagram 
Length and angle 

    

Complex Conjugate 
𝑧∗ = 𝑧̅ = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) 

    

De Moivre’s Theorem 
(𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥)/ = cos 𝑛𝑥 + 𝑖𝑠𝑖𝑛	𝑛𝑥 

Useful the following follow-on results: 
• 𝑧+/ = 𝑟+/(cos 𝑛𝜃 − 𝑖	 sin 𝑛𝜃)  
• 𝑧 + '

-
= 2 cos 𝜃  

• 𝑧 − '
-
= 2𝑖 sin 𝜃  

• 𝑧/ + '
-'

 = 𝑧/ + 𝑧+/ = 2 cos 𝑛𝜃.		Rearranging ⇒ cos 𝑛𝜃 = -
',-('

!
 

• 𝑧/ − '
-'

 = 𝑧/ − 𝑧+/ = 2𝑖 sin 𝑛𝜃 . Rearranging ⇒	sin 𝑛𝜃 = -
'+-('

!0
  

    

Multiplying and Dividing 
Multiplying (multiply the moduli and add the arguments) 

[𝑟'(cos 𝜃' + 𝑖 sin 𝜃')][𝑟!(cos 𝜃! + 𝑖 sin 𝜃!)]	=  𝑟'𝑟![cos(𝜃' + 𝜃!) + 𝑖 sin(𝜃' + 𝜃!)] = 𝑟'𝑟!𝑒0(2",2!) 
Dividing (divide the moduli and subtract the arguments) 

4"(5672",0 7892")
4!(5672!,0 7892!)

		can be divided quickly and is 4"
4!
[cos(𝜃' − 𝜃!) + 𝑖 sin(𝜃' − 𝜃!)] 

    

Representing 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) as 	𝑧 = 𝑟(cos(𝜃 + 2𝑘𝜋) + 𝑖 sin(𝜃 + 2𝑘𝜋)	)     
Finding cube roots and above (solutions to 𝑧/ = 𝑠)  and representation on an argand diagram 
(we use De Moivre’s Theorem) 
 

𝑧/ = 𝑠 ⟹ 𝑧 = 𝑟
'
/ tcos

𝜃 + 2𝑘𝜋
𝑛

+ 𝑖 sin
𝜃 + 2𝑘𝜋

𝑛
	u 

    

Solutions to 𝑧/ = 1 
𝑧 = cos !:;

/
+ 𝑖 sin !:;

/
 for 𝑘 = 1, 2,3, 4, … 𝑛 

    

nth roots of unity 1,𝜔,𝜔!, 𝜔(, … , 𝜔/+' (solutions to 𝑧/ = 1 where n is positive integer)and properties: 
• 1,𝜔,𝜔!, 𝜔(, … , 𝜔/+' form the vertices of a regular n-gon with centre at the origin 
• 1+𝜔 + 𝜔! + 𝜔( +⋯+ 𝜔/+' = 0 

    

If we know one solution to  𝑧/ = 𝑠 (call it 𝑧')	and the solutions to 𝑧/ = 1	 (roots of unity) then the roots  
of 𝑧/ = 𝑠 are 𝑧', 𝑧'𝜔, 𝑧'𝜔!, … 𝑧'𝜔/+' 

    



 
 
 
 
 
 
 
 
 
 
 
 

Euler’s Form 
Converting Modulus Argument Form To Euler’s Form  

𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 	𝑟𝑒02 
Note: If given Cartesian form we must turn it into modulus argument form first 

    

Converting Cartesian Form To Euler’s Form:  	𝒂 + 𝒃𝒊 → 	𝒓𝒆𝒊𝜽 
Turn it into modulus argument form and then into Eulers form 

    

Multiplying and Dividing: 
Multiplying (multiply the moduli and add the arguments) 

𝑟'𝑒2" × 𝑟!𝑒2! = 𝑟'𝑟!𝑒0(2",2!) 
Dividing (divide the moduli and subtract the arguments) 

𝑟'𝑒2"

𝑟!𝑒2!
=
𝑟'
𝑟!
𝑒0(2"+2!) 

    

Inequality Properties 
• |𝑅𝑒(𝑧)| ≤ |𝑧| and |𝐼𝑚(𝑧)| ≤ |𝑧|  
• |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|  
• |𝑧 + 𝑤| ≥ |𝑧| − |𝑤|  

    

Loci  
|𝑧| = 𝑘	 ⇒ circle centre origin and radius 𝑘     
|𝑧| < 𝑘	 ⇒ Inside of circle centre origin and radius 𝑘     
|𝑧| ≥ 𝑘	 ⇒outside of circle including circumference centre origin and radius 𝑘     
|𝑧 − 𝑎| = 𝑘	 ⇒ circle centre 𝑎 and radius 𝑘     
|𝑧 − 𝑎| < 𝑘	 ⇒ Inside of circle centre 𝑎 and radius 𝑘     
|𝑧 − 𝑎| ≥ 𝑘	 ⇒ outside of circle including circumference centre 𝑎 and radius 𝑘     
|𝑧 − 𝑎| = |𝑧 − 𝑏| ⇒let 𝑧 = 𝑥 + 𝑖𝑦	and use |𝑎 + 𝑖𝑏| = √𝑎! + 𝑏! and see which equation you get     
arg	(𝑧 − 𝑎) = 𝜃 is a line from 𝑥 = 𝑎 on the 𝑥 axis with angle 𝜃 from the positive 𝑥 axis     

Trig Powers and Linear Functions 
Writing Trig Powers In Terms of Linear Functions Of Trig: 
 
To write powers of 𝑐𝑜𝑠 in terms of cos and sin 

Use X𝑧 + '
-
Y
/
= (2𝑐𝑜𝑠𝑥)/	  to write 𝑐𝑜𝑠/𝑥 in terms of cos 𝑛𝑥 	and/or	 sin 𝑛𝑥 

 
Do binomial on LHS and then group using 𝑧/ ± '

-'
  results using 𝑧/ + '

-'
= 2 cos 𝑛𝜃 

 
Use indices rule (𝑥/)> to simplify RHS 

 
  Rearrange for power term 

 
To write powers of 𝑠𝑖𝑛 in terms of cos and sin 

X𝑧 − '
-
Y
/
= (2𝑖	sin	𝑥)/	  to write 𝑠𝑖𝑛/𝑥 in terms of cos 𝑛𝑥 	and/or	 sin 𝑛𝑥 

 
Do binomial on LHS and then group using 𝑧/ ± '

-'
  results using 𝑧/ − '

-'
= 2𝑖 sin 𝑛𝜃 

 
Use indices rules (𝑥/)> on RHS 

 
Rearrange for power term 

    

Writing Linear Functions Of Trig  In Terms Of Trig Powers: 
 

use	(𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥)/ = cos 𝑛𝑥 + 𝑖𝑠𝑖𝑛	𝑛𝑥	to write cos 𝑛𝑥	or sin 𝑛𝑥 in terms of 𝑠𝑖𝑛>𝑥	and/or		𝑐𝑜𝑠>𝑥 
 

Note: The equality is true because of De’ Moivres theorem 
 

Use binomial expansion on LHS 
Equate LHS with the real part of RHS want 𝑐𝑜𝑠	𝑛𝑥 
Equate LHS the imaginary part of RHS want 𝑠𝑖𝑛	𝑛𝑥 

    

Sum of Series 
Use results about sum of geometric series with complex numbers (sum and sum to infinity)     



Type Explanations Examples 
Definition 

 

√−1 = 𝑖 
𝑖& = −1 

 
We are often asked to do calculate powers of 𝑖.	Relate to 𝑖& using indices rules to deal with.  
 

Example 1:  
𝑖)* = (𝑖&)&) = (−1)&) = 1  
Example 2: 
𝑖&+ = (𝑖&),-𝑖 = (−1)𝑖 = −𝑖   
Example 3: 
√−10√−40 = √−1√10√−1√40 = 𝑖√10𝑖√40 = 𝑖&√400 = −20 .   
Do not make the mistake of saying √−10√−40 = √400 = 20 

Jargon  

 

Form: Real + Imaginary so we have 𝑧 = 𝑥 + 𝑖𝑦		with 𝑥, 𝑦 ∈ ℝ 
Note: we can also write 𝑧 = 𝑥 + 𝑦𝑖 

 
• 𝑥 = 𝑅𝑒(𝑧) means the real part of 𝑧 

• 𝑦 = 𝐼𝑚(𝑧) means the imaginary part of 𝑧 

• Modulus 𝑎 + 𝑏𝑖 = |𝑎 + 𝑏𝑖| = √𝑎& + 𝑏& 

• Complex conjugate  
𝑧∗	𝑜𝑟	𝑧̅ = 𝑥 − 𝑖𝑦  is the complex conjugate of z. 
Remember if you know one root, then the conjugate is necessarily another root. 
Properties:             

o (𝑧 ± 𝑤)∗ = 𝑧∗ ± 𝑤∗ 
o (𝑧𝑤)∗ = 𝑧∗𝑤∗  

o '$
%
(
∗
= $∗

%∗
 if 𝑤 ≠ 0 

o 𝑧. 𝑧∗ = |𝑧|& 
• Argand diagram 
 

Example 1: 
Find the complex conjugate, modulus and state the real and imag parts of 2 − 3𝑖  
The complex conjugate is 2 + 3𝑖.  2 is the real part, −3	 is the imaginary part 
Modulus = G2& + (−3)& = √4 + 9 = √13 
  
Example 2: 
𝑧 = 2 + 3𝑖, 𝑤 = 5 − 8𝑖  
Find (𝑧 + 𝑤)∗ 
(2 − 3𝑖) + (5 + 8𝑖) = 7 + 5𝑖  
 
 
 

Adding/Subtracting 
 
 

• Adding: (𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑) 
• Subtracting: (𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑) 

 

Example 1: 
(3 −2𝑖) + (4 + 3𝑖) = (3 + 4) + (−2 + 3)𝑖 = 7 + 𝑖 
Example 2: 
(3 −2𝑖) − (4 + 3𝑖) = (3 − 4) + (−2 − 3)𝑖 = −1 − 5𝑖 

Multiplying/Dividing 
 

• Multiplying: (𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + 𝑖&𝑏𝑑 = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) 
• Dividing: /012

3014
 

Multiply by complex conjugate 𝑐 − 𝑖𝑑 
/012
3014

× 3514
3514

= /35/41023151"24
3"51"4"

= /35/410231024
3"04"

  and then simplify further 

Example 1: 
(3 −2𝑖)(4 + 3𝑖) = 12 + 9𝑖 − 8𝑖 − 6𝑖& = 12 + 9𝑖 − 8𝑖 − 6(−1) = 18 + 𝑖 
Example 2: 
-5&1
)0-1

= -5&1
)0-1

×	)5-1
)5-1

= ,&5615*157
,706

= 75,+1
&8

= 7
&8
− ,+

&8
𝑖  

Solving with Complex 
Numbers 
 

 

We commonly equate real and imaginary parts in order to solve equations with complex 
numbers in them. 

 

Example 1: 
Find the values of 𝑥 and 𝑦 if (1 − 𝑖)𝑧 = 1 − 3𝑖 
Let 𝑧 = 𝑥 + 𝑖𝑦. 
(1 − 𝑖)(𝑥 + 𝑖𝑦) = 1 − 3𝑖  
𝐿𝐻𝑆 = 𝑥 + 𝑖𝑦 − 𝑖𝑥 + 𝑦 = (𝑥 + 𝑦) + 𝑖(−𝑥 + 𝑦)  
Equating real and imaginary parts gives 𝑥 + 𝑦 = 1 and −𝑥 + 𝑦 = −3 
⟹ 𝑥 = 2, 𝑦 = −1  
Example 2: 
Given that $

$5*
= −1 − 2𝑖,	find z in the form 𝑎 + 𝑖𝑏 

𝑧 = (−1 − 2𝑖)(𝑧 − 8)  
𝑎 + 𝑖𝑏 = (−1 − 2𝑖)(𝑎 + 𝑖𝑏 − 8)  
𝑎 + 𝑖𝑏 = −𝑎 − 𝑖𝑏 + 8 − 2𝑎𝑖 + 2𝑏 + 16𝑖  
𝑎 + 𝑖𝑏 = (−𝑎 + 2𝑏 + 8) + 𝑖(−𝑏 − 2𝑎 + 16)  
Equating real and imaginary gives 
 −𝑎 + 2𝑏 + 8 = −1,−𝑏 − 2𝑎 + 16 = −2⟹ 𝑎 = 6, 𝑏 = 2  
𝑧 = 6 + 2𝑖  
Example 3: 
Find the square roots of 8 − 6𝑖 
Write as 𝑧& = 8 − 6𝑖 ⟺ 𝑧 = √8 − 6𝑖 
(𝑥 + 𝑖𝑦)& = 8 − 6𝑖  
𝐿𝐻𝑆 = 𝑥& + 2𝑥𝑦𝑖 − 𝑦& = (𝑥& − 𝑦&) + 𝑖(2𝑥𝑦)  
Compare coefficients: 𝑥& − 𝑦& = 8, 2𝑥𝑦 = −6 
Solving simultaneously gives 𝑥 = ±3, 𝑦 = ∓1,	 so we get 𝑧 = 3 − 𝑖, −3 + 𝑖 

Factorising & Solving 
Polynomials 

 

Factorising:  
Find a factor and then divide by it like usual. 
Solving:  
Ø Quadratics: use quadratic formula as usual 
Ø Cubics and above: Normally given a root. Remember if you know one root, then the 

conjugate is necessarily another root.  It is quicker to use the equation 
𝑥& − (𝑠𝑢𝑚	𝑟𝑜𝑜𝑡𝑠)𝑥 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑟𝑜𝑜𝑡𝑠 instead of writing (𝑥 − 𝑟𝑜𝑜𝑡1)(𝑥 − 𝑟𝑜𝑜𝑡2) to 
build an equation based on the 2 conjugate pair roots that we know. We can then 
divide by this equation to find further roots.  

These can be hard for students. For more practice, try the following harder examples after 
seeing the easier examples on the right. 
• Factorise the polynomial 𝑃(𝑥) = 𝑥) −5𝑥- + 2𝑥& + 22𝑥 − 20 completely with integer 

coefficients given 3−𝑖 is a root of 𝑃(𝑥) 
• Given that (𝑧 − 1 − 2𝑖) is a factor of 2𝑧- − 3𝑧& + 8𝑧 + 5 solve the equation  

2𝑧- − 	3𝑧& + 8𝑧 + 5 = 0 over the complex number field 
• Let 𝑃(𝑧) = 	2𝑧- + 𝑎𝑧& + 𝑏𝑧 + 𝑐, where 𝑎, 𝑏, 𝑎𝑛𝑑	𝑐 ∈ ℝ.  Two of the roots of  

𝑃(𝑧)		are −2 and (−3 + 2𝑖).  Find the values of 𝑎, 𝑏 and 𝑐 (ans a=16, b=50, c=52) 

Example 1: 
Solve 𝑧& + 4𝑧 + 8 = 0 

𝑧 = 5)±:)"5)(,)(*)
&(,)

= 5)±√5,7
&

= 5)±)1
&

= −2 ± 2𝑖  
Example 2: 
Completely factorise 𝑓(𝑥) = 𝑥) − 2𝑥- + 2𝑥& − 2𝑥 + 1  
𝑓(1) = 0 so dividing by (𝑥 − 1) gives 𝑔(𝑥) = 𝑥- − 𝑥& + 1𝑥 − 1 
𝑔(1) = 0 so divide again by 𝑥 − 1 which gives 𝑥& + 1  
𝑥) − 2𝑥- + 2𝑥& − 2𝑥 + 1 = (𝑥 − 1)(𝑥 − 1)(𝑥& + 1) = (𝑥 − 1)&(𝑥 − 𝑖)(𝑥 + 𝑖)  
Example 3: 
Find all complex numbers z, such that 𝑧) − 𝑧- + 6𝑧& − 𝑧 + 15 = 0 and 
 𝑧 = 1 + 2𝑖 is a solution to the equation 
1 − 2𝑖 must be another root since roots occur in conjugate pairs 
𝑧& − (𝑠𝑢𝑚	𝑟𝑜𝑜𝑡𝑠)𝑧 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑟𝑜𝑜𝑡𝑠 = 𝑧& − 2𝑧 + 5  
(𝑧) − 𝑧- + 6𝑧& − 𝑧 + 15) ÷ (𝑧& − 2𝑧 + 5) = 𝑧& + 𝑧 + 3  
Solve 𝑧& + 𝑧 + 3 

𝑧 = 5,±:,"5)(,)(-)
&(,)

= 5,±√,,1
&

 = − ,
&
± √,,

&
𝑖 

Loci • |𝑧| = 𝑘	 ⇒ circle center origin and radius k 
• |𝑧| < 𝑘	 ⇒ inside of circle, centered at origin and radius k 
• |𝑧| ≥ 𝑘	 ⇒outside of circle including circumference, centered at origin and radius k 
• |𝑧 − 𝑧>| = 𝑘	 ⇒ is a circle of radius 𝑎 centered at 𝑧> 
• |𝑧 − 𝑧>| < 𝑘	 ⇒ inside of circle centered 𝑧> and radius k 
• |𝑧 − 𝑧>| ≥ 𝑘	 ⇒ outside of circle including circumference, centered at 𝑧> and radius k 
• |𝑧 − 𝑧>| = |𝑧 − 𝑧,|  

To deal with this we let 𝑧 = 𝑥 + 𝑖𝑦 and the take the modulus of each side and see which 
equation you get.  Might be a straight line or circle etc. 

• 𝑎𝑟𝑔	(𝑧 − 𝑧>) = 𝜃 is a line from 𝑥 = 𝑧> on the 𝑥 axis with angle 𝜃 from the positive 𝑥 axis 

Describe clearly the locus in the complex plane defined by the equation  
 |𝑧 + 2𝑖| = |2𝑖𝑧 − 1| 
 
|𝑥 + 𝑖𝑦 + 2𝑖| = |2𝑖(𝑥 + 𝑖𝑦) − 1| 
|𝑥 + 𝑖(𝑦 + 2)| = |(−1 − 2𝑦) + 2𝑥𝑖| 
G𝑥& + (𝑦 + 2)& = G(−1 − 2𝑦)& + 4𝑥&  
𝑥& + (𝑦 + 2)& = (−1 − 2𝑦)& + 4𝑥&  
3𝑥& + 3𝑦& = 3  
𝑥& + 𝑦& = 1  
Unit circle i.e. circle centre (0,0) radius 1 

Inequalities • |𝑅𝑒(𝑧)| ≤ |𝑧| and |𝐼𝑚(𝑧)| ≤ |𝑧|  
• |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|  
• |𝑧 + 𝑤| ≥ |𝑧| − |𝑤|  
• |𝑒?@/A| = 𝑒?@/A 

 



 
 
 
 

3 Forms 

Cartesian Form 
𝑧 = 𝑥 + 𝑖𝑦,	with 𝑥, 𝑦 ∈ ℝ 

 
All above methods and properties have dealt with this form 

 

Modulus Argument Form (aka Polar form) 
𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) where, |𝑧| = 𝑟	 and arg 𝑧 = 𝜃 

 
Basic Properties: 
• 𝑧∗ = 	 𝑧# = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) 
• 𝑧" = 𝑟"(cos 𝑛𝜃 + 𝑖	 sin 𝑛𝜃) by De Moivre’s Theorem 
• 𝑧#" = 𝑟#"(cos 𝑛𝜃 − 𝑖	 sin 𝑛𝜃) by De Moivre’s Theorem 
Multiplying and Dividing Properties: 
Mod Results 
• |𝑧$𝑧%| = |𝑧$||𝑧%| 
• 3&#

&"
3=|&#|
|&"|

 

Arg Results 
• arg(𝑧$𝑧%) = arg(𝑧$) + arg	(𝑧%).   

This works like indices rules.  When we multiply, we add the powers. 
So 	[𝑟$(cos 𝜃$ + 𝑖 sin 𝜃$)][𝑟%(cos 𝜃% + 𝑖 sin 𝜃%)]	can be multiplied quickly and is 
𝑟$𝑟%[cos(𝜃$ + 𝜃%) 	 +𝑖 sin(𝜃$ + 𝜃%)] = 𝑟$𝑟%𝑒((*#+*") 

• 𝑎𝑟𝑔 <&#
&"
= = arg(𝑧$) − arg	(𝑧%)   

This works like indices rules.  When we divide. we subtract the powers. 
So -#(./0*#+( 012*#)

-"(./0*"+( 012*")
		can be divided quickly and is -#

-"
[cos(𝜃$ − 𝜃%) + 𝑖 sin(𝜃$ − 𝜃%)] 

Useful Results:  
• 𝑧 + $

&
= 2 cos 𝜃  

• 𝑧 − $
&
= 2𝑖 sin 𝜃  

• 𝑧" + $
&$

 = 𝑧" + 𝑧#" = 2 cos 𝑛𝜃 

rearranging ⇒ cos 𝑛𝜃 = &
$+&%$

%
 

• 𝑧" − $
&$

 = 𝑧" − 𝑧#" = 2𝑖 sin 𝑛𝜃  

rearranging ⇒	sin 𝑛𝜃 = &
$#&%$

%(
   

Euler’s Form 
𝑟𝑒$, 

 
 
Basic Properties: 
• 						𝑧 = 𝑟𝑒(* = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 
• 𝑧∗ = 	 𝑧# = 𝑟𝑒#(* = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) 
• 𝑧" = 𝑟"𝑒("* = 𝑟"(cos 𝑛𝜃 + 𝑖	 sin 𝑛𝜃)  
• 𝑧#" = 𝑟#"𝑒#("* = 𝑟#"(cos 𝑛𝜃 − 𝑖	 sin 𝑛𝜃)   

 

Converting Between The 3 Forms 
Modulus Argument→Cartesian  
 	𝒓(𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽) → 𝒂 + 𝒃𝒊: 

 
Work out values of the trig function and this will 

immediately be in cartesian form 
 

Example:  

Convert 2 <𝑐𝑜𝑠 3
4
+ 𝑖𝑠𝑖𝑛 3

4
= into cartesian form 

= 2M<$
%
= + 𝑖 <√4

%
=N  

= 1 + √3𝑖 
 
 
 
 

 

Cartesian→Modulus Argument 
  𝒂 + 𝒃𝒊 → 	𝒓(𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽) 

 
Need to find 𝑟	𝑎𝑛𝑑	𝜃.  To find 𝑟	and 𝜃 we use the fomrula 

𝑎 + 𝑏𝑖 ⇒ T
𝑟 = √𝑎% + 𝑏%																																												
𝜃 = 𝑡𝑎𝑛#$ <36

7
3=																																							

	
 

and then draw the angle 𝜃 in the quadrant where the 
complex number 𝑎 + 𝑏𝑖 lies 
Read off  𝜃 by starting on the positive 𝑥 axis (like when you 
solve for trig using the CAST diagram) 
(remember: −𝜋 ≤ 𝜃 < 𝜋) 

Or use the formula 𝜃 =

⎩
⎪
⎨

⎪
⎧tan#$ <

6
7
=						(𝑖𝑓	𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡	1	𝑜𝑟	4)

tan#$ <6
7
= + 𝜋			(𝑖𝑓	𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡	2)

tan#$ <6
7
= − 𝜋				(𝑖𝑓	𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡	3)

 

Sub this r and 𝜃 found into  𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 
Example:  

Convert 𝑧 = 1 − √3𝑖 into modulus argument form 

𝑟 = b(1)& + (−√3)& = √4 = 2  

 
𝜃 = 𝑡𝑎𝑛5, '√-

,
( = B

-
  

Complex number is in 4th quadrant so angle is − B
-
 

Plugging this into the form we get 
2 'cos	(− B

-
) + 𝑖𝑠𝑖𝑛(− B

-
()  

= 2fcos 'B
-
( − 𝑖𝑠𝑖𝑛 'B

-
(g	  

Modulus Argument→Euler  
𝒓(𝐜𝐨𝐬𝜽 + 𝒊 𝐬𝐢𝐧𝜽) → 𝒓𝒆𝒊𝜽 

 
Get into Modulus Argument form if given 
cartesian form and then you can read Euler’s 
form straight off by locating r and 𝜃 

 
This is easy since we already know 𝑟 and 𝜃 
from modulus argument form 
 
Example: 

Convert 2<𝑐𝑜𝑠 3
4
+ 𝑖𝑠𝑖𝑛 3

4
= into Euler form 

= 2𝑒(
3
4  

 
 

 

Cartesian→Euler  
𝒂 + 𝒃𝒊 → 	𝒓𝒆𝒊𝜽 

 
Turn this into modulus argument form using 
second column and then see third column 
 
Example: 
Convert −2 − 2𝑖 into Euler Form 
𝑟 = G(−2)& + (−2)& = √8 = 2√2  
 
𝜃 = 𝑡𝑎𝑛5, '&

&
( = B

)
  

 
𝜃 = −𝜋 − -B

)
   

Complex number is in 3rd quadrant so 
angle is − -B

)
	 

Plugging this into the form we get 
2√2'cos	 '− -B

)
(	+ 𝑖𝑠𝑖𝑛 '− -B

)
(	(  

= 2√2𝑒51
-B
)  

 
 
 

We commonly use mod/arg form to find the roots of complex numbers.  Finding square roots is easy since we can compare coefficients instead like in example 3 under solving with complex numbers section, 
but when we get to third roots and above the algebra becomes messy and it is easier to put into modulus argument form and use De Moivre’s  
Example: 
Find the cube roots of 8𝑖 
𝑧4 = 8𝑖 ⟺ 	𝑧 = (8𝑖)

#
&  

Let’s turn 8𝑖 into modulus argument form: r= √8% = 8 , 𝜃 = 𝑡𝑎𝑛#$ <:
;
= = 3

%
	  

𝑧 = M8k𝑐𝑜𝑠 <3
%
+ 2𝑛𝜋= + 𝑖𝑠𝑖𝑛 <3

%
+ 2𝑛𝜋=lN

#
&
 = 8

#
& k𝑐𝑜𝑠 <3

<
+ %"3

4
= + 𝑖𝑠𝑖𝑛 <3

<
+ %"3

4
=l  

𝑧 = 2 k𝑐𝑜𝑠 <3
<
+ %"3

4
= + 𝑖𝑠𝑖𝑛 <3

<
+ %"3

4
=l   

Choose 3 values for 𝑛 

Let 𝑛 = −1 :2 k𝑐𝑜𝑠 <3
<
− %3

4
= + 𝑖𝑠𝑖𝑛 <3

<
− %3

4
=l  = 	2k𝑐𝑜𝑠 <#43

<
= + 𝑖𝑠𝑖𝑛 <#43

<
=l 	= 2 k𝑐𝑜𝑠 <3	

%
= − 𝑖𝑠𝑖𝑛 <3	

%
=l = 2𝑒#

'
"   

Let 𝑛 = 1  : 2k𝑐𝑜𝑠 <3
<
+ %3

4
= + 𝑖𝑠𝑖𝑛 <3

<
+ %3

4
=l = 	2k𝑐𝑜𝑠 <>3

<
= + 𝑖𝑠𝑖𝑛 <>3

<
=l = 2𝑒

('
)     

Let 𝑛 = 0 :  2k𝑐𝑜𝑠 <3
<
= + 𝑖𝑠𝑖𝑛 <3

<
=l = 2𝑒

'
)   

These roots are equispaced around a circle of radius r (see the diagram on the right) 
 

 


